Kontrol Kamar Otomatis
- Membuat rangkaian Kontrol Kamar Otomatis menggunakan sensor LDR, UV, kelembaban, piezo dan sound.
- Untuk memahami prinsip sensor LDR, UV, kelembaban, piezo dan sound.
- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
- Bi-Polar Transistor
- DC Current Gain (hFE) is 800 maximum
- Continuous Collector current (IC) is 100mA
- Emitter Base Voltage (VBE) is > 0.6V
- Base Current(IB) is 5mA maximum
Spesifikasi:
Adapun spesifikasi atau karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :
·Tegangan maksimum (DC): 150V
·Konsumsi arus maksimum: 100mW
·Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
·Puncak spektral: 540nm (ukuran gelombang cahaya)
·Waktu Respon Sensor : 20ms – 30ms
·Suhu operasi: -30° Celsius – 70° Celcius
3) Sensor Sound
Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
- Working voltage: DC 3.3-5V
- Dimensions: 45 x 17 x 9 mm
- Signal output indication
- Single channel signal output
- With the retaining bolt hole, convenient installation
- Outputs low level and the signal light when there is sound
4) Sensor Ultraviolet (APDS – 9002)
Sensor yang mendeteksi adanya cahaya terang dan gelap.
8. JKFF
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter).
Konfigurasi pin IC 74111
9. 74LS47
Decoder BCD ke 7 segment merupakan rangkaian elektronika yang berfungsi untuk mengubah kode BCD menjadi karakter tampilan angka desimal yang dapat dilihat secara visual.
11. Gerbang OR
12. Sensor LDR
Spesifikasi:
Adapun spesifikasi atau karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :
·Tegangan maksimum (DC): 150V
·Konsumsi arus maksimum: 100mW
·Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
·Puncak spektral: 540nm (ukuran gelombang cahaya)
·Waktu Respon Sensor : 20ms – 30ms
·Suhu operasi: -30° Celsius – 70° Celcius
Tegangan LED menurut warna yang dihasilkan:
- Infra merah : 1,6 V.
- Merah : 1,8 V – 2,1 V.
- Oranye : 2,2 V.
- Kuning : 2,4 V.
- Hijau : 2,6 V.
- Biru : 3,0 V – 3,5 V.
- Putih : 3,0 – 3,6 V.
- Ultraviolet : 3,5 V.
- Konfigurasi pin Relay dihubungkan ke 5V
- GND dihubungkan ke GND
- IN1/Data dihubungkan ke pin 2
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.
- Bi-Polar Transistor
- DC Current Gain (hFE) is 800 maximum
- Continuous Collector current (IC) is 100mA
- Emitter Base Voltage (VBE) is > 0.6V
- Base Current(IB) is 5mA maximum
Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.
Karakteristik penguat ideal adalah:
- Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga, serta pada rentang frekuensi yang luas.
- Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
- Impedansi output sangat kecil (Zo <<).
Konfigurasi PIN LM741:
Spesifikasi:
Respons karakteristik kurva I-O:
Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
- Working voltage: DC 3.3-5V
- Dimensions: 45 x 17 x 9 mm
- Signal output indication
- Single channel signal output
- With the retaining bolt hole, convenient installation
- Outputs low level and the signal light when there is sound
6) Sensor Ultraviolet (APDS – 9002)
Sensor yang mendeteksi adanya cahaya terang dan gelap.
10. Relay
Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay. Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
A. Electromagnet (Coil)
B. Armature
C. Switch Contact Point (Saklar)
D. Spring
11. Motor
Motor
Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.
Prinsip Kerja Motor DC
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.
12. Baterai
Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Jenis-jenis Baterai
1. Baterai Primer (Baterai Sekali Pakai/Single Use)
Baterai jenis ini pada umumnya memberikan tegangan 1,5 Volt dan terdiri dari berbagai jenis ukuran seperti AAA (sangat kecil), AA (kecil) dan C (medium) dan D (besar). Disamping itu, terdapat juga Baterai Primer (sekali pakai) yang berbentuk kotak dengan tegangan 6 Volt ataupun 9 Volt. Jenis-jenis : Baterai Zinc-Carbon (Seng-Karbon), Baterai Alkaline (Alkali), Baterai Lithium, Baterai Silver Oxide
2. Baterai Sekunder (Baterai Isi Ulang/Rechargeable)
Pada prinsipnya, cara Baterai Sekunder menghasilkan arus listrik adalah sama dengan Baterai Primer. Hanya saja, Reaksi Kimia pada Baterai Sekunder ini dapat berbalik (Reversible). Pada saat Baterai digunakan dengan menghubungkan beban pada terminal Baterai (discharge), Elektron akan mengalir dari Negatif ke Positif. Sedangkan pada saat Sumber Energi Luar (Charger) dihubungkan ke Baterai Sekunder, elektron akan mengalir dari Positif ke Negatif sehingga terjadi pengisian muatan pada baterai. Jenis-jenis Baterai yang dapat di isi ulang (rechargeable Battery) yang sering kita temukan antara lain seperti Baterai Ni-cd (Nickel-Cadmium), Ni-MH (Nickel-Metal Hydride) dan Li-Ion (Lithium-Ion).
13. LED
LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.
LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
14. Gerbang Logika OR (IC 7432)
Gerbang Logika OR memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan 1 Keluaran (Output). Gerbang OR akan menghasilkan Keluaran 1 jika salah satu dari Masukan bernilai Logika 1 dan apabila pada gerbang OR menghasilkan Keluaran (Output) Logika 0, maka semua Masukan (Input) harus bernilai Logika 0.
Tabel kebenaran pada tabel diatas menggambarkan fungsi OR inklusi. Gerbang OR memilki keluaran (ouput) bernilai RENDAH bila semua masukan (input) adalah bernilai RENDAH. Kolom keluaran pada tabel memperlihatkan bahwa hanya baris 1 pada tabel kebenaran OR yang menimbulkan keluaran 0, sedangkan semua baris lain menimbulkan keluaran 1.
15. JK flip-flop (IC 74111)
JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop. Gambar Rangkaian Dasar JK Flip-Flop:
Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut.
16. Potensiometer
Pada dasarnya bagian-bagian penting dalam Komponen Potensiometer adalah :
1. Penyapu atau disebut juga dengan Wiper
2. Element Resistif
3. Terminal
Jenis-jenis Potensiometer
1. Potensiometer Slider, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara menggeserkan Wiper-nya dari kiri ke kanan atau dari bawah ke atas sesuai dengan pemasangannya. Biasanya menggunakan Ibu Jari untuk menggeser wiper-nya.
2. Potensiometer Rotary, yaitu Potensiometer yang nilai resistansinya dapat diatur dengan cara memutarkan Wiper-nya sepanjang lintasan yang melingkar. Biasanya menggunakan Ibu Jari untuk memutar wiper tersebut. Oleh karena itu, Potensiometer Rotary sering disebut juga dengan Thumbwheel Potentiometer.
3. Potensiometer Trimmer, yaitu Potensiometer yang bentuknya kecil dan harus menggunakan alat khusus seperti Obeng (screwdriver) untuk memutarnya. Potensiometer Trimmer ini biasanya dipasangkan di PCB dan jarang dilakukan pengaturannya.
Fungsi-fungsi Potensiometer
1. Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.
2. Sebagai Pengatur Tegangan pada Rangkaian Power Supply
3. Sebagai Pembagi Tegangan
4. Aplikasi Switch TRIAC
5. Digunakan sebagai Joystick pada Tranduser
6. Sebagai Pengendali Level Sinyal
17. LDR Sensor
LDR (Ligh Dependent Resistor) adalah suatu komponen elektronik yang resistansinya tergantung pada intensitas cahaya. LDR di buat dari bahan Cadium Sulfida yang peka terhadap cahaya. LDR akan mempunyai hambatan yang sangat besar saat tidak ada cahaya mengenainya (gelap). Dalam kondisi ini hambatan LDR mampu mencapai 1M ohm, akan tetapi pada saat LDR mendapat cahaya hambatan LDR akan menurun menjadi beberapa puluh ohm saja.
Pada saat gelap atau cahaya redup, bahan dari cakram pada LDR menghasilkan elektron bebas dengan jumlah yang relatif kecil. Sehingga hanya ada sedikit elektron untuk mengangkut muatan elektrik. Artinya pada saat cahaya redup LDR menjadi pengantar arus yang kurang baik, atau bisa disebut juga LDR memiliki resistansi yang besar pada saat gelap atau cahaya redup.
Pada saat cahaya terang, ada lebih banyak elektron yang lepas dari bahan semikonduktor tersebut. Sehingga akan ada lebih banyak elektron untuk mengangkut muatan elektrik. Artinya pada saat cahaya terang LDR menjadi konduktor atau bisa disebut juga LDR memilki resistansi yang kecil pada saat cahaya terang. LDR digunakan untuk mengubah energi cahaya menjadi energi listrik. Saklar cahaya otomatis adalah salah satu contoh alat yang menggunakan LDR. Akan tetapi karena responsnya terhadap cahaya cukup lambat, LDR tidak digunakan pada situasi dimana intesitas cahaya berubah secara drastis. Rangkaian elektronik yang dapat digunakan untuk LDR adalah rangkaian yang dapat mengukur nilai resistansi dari LDR tersebut. Dari hukum ohm, diketahui bahwa:
Dengan V adalah beda potensial antara dua titik, I adalah arus yang mengalir di antara-nya, dan R adalah resistansi di antara-nya. Lebih lanjut dikatakan pula bahwa nilai R tidak bergantung dari V ataupun I. Sehingga, jika ada perubahan nilai resistansi dari R, maka nilai tegangan V-nya pun akan berubah. Jika beda potensial di-set tetap, maka perubahan resistansi hanya akan mempengaruhi besar arusnya.
Karakteristik Sensor LDR
Adapun spesifikasi atau karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :
· Tegangan maksimum (DC): 150V
· Konsumsi arus maksimum: 100mW
· Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
· Puncak spektral: 540nm (ukuran gelombang cahaya)
· Waktu Respon Sensor : 20ms – 30ms
· Suhu operasi: -30° Celsius – 70° Celcius.
18. IC 74LS47
Decoder BCD ke 7 segment merupakan rangkaian elektronika yang berfungsi untuk mengubah kode BCD menjadi karakter tampilan angka desimal yang dapat dilihat secara visual. Data BCD 4 bit diubah menjadi tampilan visual angka desimal 0-9 menggunakan rangkaian logika dasar digital (AND, OR dan NOR). Data BCD 4 bit tersebut diubah sesuai nilai desimal seperti pada tabel
Proses pengkodean data BCD menjadi tampilan angka desimal dilakukan secara terpisah untuk tiap ruas/segment (ruas a- ruas g). Untuk membangun sebuah dekoder 7 segment dari data tabel kebenaran diatas, langkah pertama adalah menentukan persamaan yang dapat mewakili fungsi dekoder tiap ruas. Setelah itu dapat di buat rangkaian decoder untuk tiap ruas menggunakan rangkaian digital dari gerbang logika dasar.
19. IC OP AMP
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
- Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
- Tepatkan posisi letak nya dengan gambar rangkaian
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
- Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian pada grden otomatis bekerja
Rangkaian Keseluruhan
Prinsip Kerja
Pada rangkaian diatas
digunakan 2 sensor ldr yang diletakkan didalam kamar (A) dan sensor UV diluar kamar dan
terkena sinar matahari (B). Saat menutup gorden di malam hari
Saat sensor A mendeteksi adanya cahaya di dalam kamar dari lampu, maka cahaya akan masuk ke LDR. Saat LDR mendapatkan cahaya dengan intensitas tinggi maka resistansi LDR akan kecil sehingga arus dari Vcc dapat mengalir. Arus kemudian masuk ke potensiometer dan ke op-amp. Op-amp pada rangkaian berfungsi sebagai komparator. Tegangan dari Vcc kemudian masuk ke op-amp dan dibandingkan dengan tegangan pada potensiometer. Karena resistansi LDR kecil maka tegangan yang mengalir ke kaki negatif op amp menjadi besar dan sesuai prinsip kerja komparator maka output dari op-amp adalah tegangan yang besar maka LED 1 menyala sebagai indikator di dalam kamar lampu hidup. Logika 1 kemudian masuk ke input 1 gerbang OR 1 dan input 2 mendapat logika 0 dari ground sehingga output nya adalah logika 1 yang memutar motor secara clockwise dan menutup gorden.
Sedangkan sensor di luar ruangan tidak mendapatkan cahaya karena
keadaan gelap di malam hari, sehingga resistansi UV besar dan arus dari Vcc
tidak dapat mengalir ke potensiometer dan Op-amp sehingga tidak ada juga arus
yang mengalir dari output op-amp (sangat kecil) sehingga input2 gerbang OR4
berlogika 0 dan input 1 gerbang OR 4 juga mendapat logika 0 dari ground maka
motor mengikuti arah putaran motor 1 yaitu clockwise dan gorden tertutup.
Saat membuka gorden di
pagi hari
Saat sensor B
mendeteksi adanya cahaya di luar kamar dari matahari, maka cahaya akan masuk ke
UV. Saat UV mendapatkan cahaya dengan intensitas tinggi maka resistansi UV akan kecil sehingga arus dari Vcc dapat mengalir. Arus kemudian masuk ke
potensiometer dan ke op-amp. Op-amp pada rangkaian berfungsi sebagai
komparator. Tegangan dari Vcc kemudian masuk ke op-amp dan dibandingkan dengan
tegangan pada potensiometer. Karena resistansi UV kecil maka tegangan yang
mengalir ke kaki negatif op - amp menjadi besar dan sesuai prinsip kerja
komparator maka output dari op-amp adalah tegangan yang besar maka LED 2
menyala sebagai indikator matahari sudah terbit. Logika 1 kemudian masuk ke
input 2 gerbang OR 4 dan input 1 mendapat logika 0 dari ground sehingga output
nya adalah logika 1 yang memutar motor secara counterclockwise dan membuka
gorden.
Sedangkan sensor di
dalam ruangan tidak mendapatkan cahaya karena lampu dimatikan, sehingga
resistansi LDR besar dan arus dari Vcc tidak dapat mengalir ke potensiometer
dan Op-amp sehingga tidak ada juga arus yang mengalir dari output op-amp
(sangat kecil) sehingga input1 gerbang OR1 berlogika 0 dan input 2 gerbang OR 1
juga mendapat logika 0 dari ground maka motor mengikuti arah putaran motor 2
yaitu counterclockwise dan gorden membuka.
Prinsip Kerja
Secara Umum :
Rangkaian Kontrol Jendela.
Terdiri atas 2 sensor, yaitu kelembaban dan sensor piezzo. Sensor kelembaban akan bekerja pada nilai batasan 55 dimana jika nilai kelembaban >55 maka motor yang berguna untuk membuka jendela akan on. Jika kelembaban <55 maka motor yang berguna untuk menutup jendela akan on.
Sensor Piezzo disini akan mengontrol kerja sensor kelembaban, dimana jika kelembaban >55 dan jendela terbuka, namun terdeteksi angin kencang di luar ruangan sehingga memberikan tekanan yang cukup bagi sensor piezzo untuk aktif, maka jendela yang sebelumnya terbuka akan dipaksa untuk menutup.
Secara Detail :
Rangkaian Kontrol Jendela.
Sensor Kelembaban mendeteksi kelembaban udara di dalam ruangan. Jika kelembaban >55 maka tegangan yang terdeteksi mencapai nilai +2.51V. Tegangan akan diumpankan ke kaki non inverting Op Amp. Disini digunakan Detektor Non Inverting. Rumus Vout = (V1-V2) x Aol. Dimana V1 adalah tegangan di kaki non inverting dan V2 adalah tegangan di kaki inverting. Jadi di dapatkan (2.53-2.50)*200.000 = 6000 dimana hasilnya bernilai + dan nilai tegangan output akan mendekati nilai Vsat+.
Disini nilai tegangan outputnya adalah +3.99V yang lalu diumpankan ke resistor 21 dan diumpankan ke kaki base transistor.
Disini terdeteksi Vbe sebesar +0.75V sehingga transistor on karena Vbe telah melebihi +0.6V.
Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground.
Akibat dari relay telah dialiri arus, maka switch akan berpindah. Maka motor yang berfungsi untuk membuka jendela akan hidup dan jendela terbuka.
Sebaliknya jika sensor mendeteksi kelembaban <55 maka tegangan yang dihasilkan +2.47V. Maka tegangan di kaki non inverting lebih kecil dari kaki inverting, sehingga nilai outputnya akan mendekati tegangan Vsat- yaitu sebesar -4.01V dan transistor tidak akan on sehingga switch pada relay tidak berpindah dan motor untuk menutup jendela berjalan.
Kemudian untuk rangkaian Sensor Piezzo akan digunakan dalam mendeteksi perubahan tekanan diakibatkan perubahan kecepatan angin di luar ruangan. Saat tegangan yang terdeteksi mencapai nilai +3.82V. Tegangan akan diumpankan ke kaki non inverting Op Amp. Disini digunakan Detektor Non-Inverting. Rumus Vout = (V1-V2) x Aol. Dimana V1 adalah tegangan di kaki non inverting dan V2 adalah tegangan di kaki inverting. Jadi di dapatkan 3.82-2.50 = +1.32V dikali 200.000 = 2640 dimana hasilnya bernilai + dan nilai tegangan output akan mendekati nilai Vsat+.
Disini nilai tegangan outputnya adalah +3.99V yang lalu diumpankan ke resistor 17 dan diumpankan ke kaki base transistor.
Disini terdeteksi Vbe sebesar +0.71V sehingga transistor on karena Vbe telah melebihi +0.6V.
Akibat dari transistor on adalah, arus dari power +5V akan mengalir ke relay dan terus ke kaki kolektor dan menuju kaki emitor lalu ke ground.
Akibat dari relay telah dialiri arus, maka switch akan berpindah. Akibatnya jendela yang sedang terbuka akan dipaksa menutup dengan memutus rangkaian loop pembuka jendelanya dan mengalirkan arus dari baterai 5 ke motor penutup jendela serta LED. Sehingga motor on, jendela tertutup, dan lampu ruangan hidup.
Rangkaian Kontrol Tumblr
C) Vidio
HTML [Download]
Simulasi rangkaian proteus [Download]
Video simulasi rangkaian [Download]
Datasheet battery [Download]
Datasheet resistor [Download]
Datasheet op amp [Download]
Datasheet motor [Download]
Datasheet switch [Download]
Datasheet relay [Download]
Datasheet transistor [Download]
Datasheet UV sensor [Download]
Datasheet 74LS47: [Download]
Datasheet LED: [Download]
Datasheet Sound sensor [Download]
Datasheet Kelembaban sensor [Download]
Datasheet Piezzo sensor [Download]
Library proteus Sound sensor [Download]
Tidak ada komentar:
Posting Komentar